
    doiiG                         S r SSKrSSKJrJrJrJrJrJrJ	r	J
r
Jr  SSKJr  SSKJrJr  SSKJs  Jr  SSKJrJrJr  / SQrS	 rSS
 jrSS jrS rSS jrSS jrg)zr
ltisys -- a collection of functions to convert linear time invariant systems
from one representation to another.
    N)	r_eye
atleast_2dpolydotasarrayzerosarrayouter)linalg)array_namespacexp_size   )tf2zpkzpk2tf	normalize)tf2ssabcd_normalizess2tfzpk2ssss2zpkcont2discretec                 B   [        X5      u  p[        U R                  5      nUS:X  a  [        U /U R                  5      n U R                  S   n[        U5      nX4:  a  Sn[        U5      eUS:X  d  US:X  a>  [        / [        5      [        / [        5      [        / [        5      [        / [        5      4$ [        R                  " [        R                  " U R                  S   XC-
  4U R                  S9U 45      n U R                  S   S:  a  [        U SS2S4   5      nO[        S//[        5      nUS:X  aZ  UR                  U R                  5      n[        S5      [        SUR                  S   45      [        UR                  S   S45      U4$ [        USS /5      * n[        U[        US-
  US-
  5      4   n[        US-
  S5      n	U SS2SS24   [        U SS2S4   USS 5      -
  n
UR                  U
R                  S   U	R                  S   45      nXX4$ )	a)  Transfer function to state-space representation.

Parameters
----------
num, den : array_like
    Sequences representing the coefficients of the numerator and
    denominator polynomials, in order of descending degree. The
    denominator needs to be at least as long as the numerator.

Returns
-------
A, B, C, D : ndarray
    State space representation of the system, in controller canonical
    form.

Examples
--------
Convert the transfer function:

.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

>>> num = [1, 3, 3]
>>> den = [1, 2, 1]

to the state-space representation:

.. math::

    \dot{\textbf{x}}(t) =
    \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
    \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\

    \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
    \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)

>>> from scipy.signal import tf2ss
>>> A, B, C, D = tf2ss(num, den)
>>> A
array([[-2., -1.],
       [ 1.,  0.]])
>>> B
array([[ 1.],
       [ 0.]])
>>> C
array([[ 1.,  2.]])
>>> D
array([[ 1.]])
r   z7Improper transfer function. `num` is longer than `den`.r   )dtypeN)r   r      )r   lenshaper   r   
ValueErrorr
   floatnphstackr	   r   reshaper   r   r   )numdennnMKmsgDfrowABCs              X/var/www/html/land-ocr/venv/lib/python3.13/site-packages/scipy/signal/_lti_conversion.pyr   r      s   p "HC	SYYB	QwseSYY'		!ACAuGoAvab% %E"2E"e4Db% " 	" ))RXXsyy|QU3399EsK
LC
yy}qs1a4y! A3%AvIIcii fua_5qwwqz1o&+ 	+ 3qr7)D
4QUAE""#AAE1AAqrE
U3q!t9c!"g..A			1771:qwwqz*+A:    c           	        ^ U c  Uc  Uc  [        S5      eUc  Uc  [        S5      eUc  Uc  [        S5      e[        XX#5      mU4S jXX#4 5       u  pp#U R                  S   =(       d.    UR                  S   =(       d    UR                  S   =(       d    SnUR                  S   =(       d    UR                  S   =(       d    SnUR                  S   =(       d    UR                  S   =(       d    Sn[        U 5      S:X  a  TR	                  XD45      OU n [        U5      S:X  a  TR	                  XE45      OUn[        U5      S:X  a  TR	                  Xd45      OUn[        U5      S:X  a  TR	                  Xe45      OUnU R                  XD4:w  a  [        SU R                   SU S	U S
35      eUR                  XE4:w  a  [        SUR                   SU S	U S
35      eUR                  Xd4:w  a  [        SUR                   SU S	U S
35      eUR                  Xe4:w  a  [        SUR                   SU S	U S
35      eXX#4$ )a  Check state-space matrices compatibility and ensure they are 2d arrays.

Converts input matrices into two-dimensional arrays as needed. Then the dimensions
n, q, p are determined by investigating the non-zero entries of the array shapes.
If a parameter is ``None``, or has shape (0, 0), it is set to a
zero-array of compatible shape. Finally, it is verified that all parameter shapes
are compatible to each other. If that fails, a ``ValueError`` is raised. Note that
the dimensions n, q, p are allowed to be zero.

Parameters
----------
A: array_like, optional
    Two-dimensional array of shape (n, n).
B: array_like, optional
    Two-dimensional array of shape (n, p).
C: array_like, optional
    Two-dimensional array of shape (q, n).
D: array_like, optional
    Two-dimensional array of shape (q, p).

Returns
-------
A, B, C, D : array
    State-space matrices as two-dimensional arrays.

Notes
-----
The :ref:`tutorial_signal_state_space_representation` section of the
:ref:`user_guide` presents the corresponding definitions of continuous-time and
disrcete time state space systems.

Raises
------
ValueError
    If the dimensions n, q, or p could not be determined or if the shapes are
    incompatible with each other.

See Also
--------
StateSpace: Linear Time Invariant system in state-space form.
dlti: Discrete-time linear time invariant system base class.
tf2ss: Transfer function to state-space representation.
ss2tf: State-space to transfer function.
ss2zpk: State-space representation to zero-pole-gain representation.
cont2discrete: Transform a continuous to a discrete state-space system.

Examples
--------
The following example demonstrates that the passed lists are converted into
two-dimensional arrays:

>>> from scipy.signal import abcd_normalize
>>> AA, BB, CC, DD = abcd_normalize(A=[[1, 2], [3, 4]], B=[[-1], [5]],
...                                 C=[[4, 5]], D=2.5)
>>> AA.shape, BB.shape, CC.shape, DD.shape
((2, 2), (2, 1), (1, 2), (1, 1))

In the following, the missing parameter C is assumed to be an array of zeros
with shape (1, 2):

>>> from scipy.signal import abcd_normalize
>>> AA, BB, CC, DD = abcd_normalize(A=[[1, 2], [3, 4]], B=[[-1], [5]], D=2.5)
>>> AA.shape, BB.shape, CC.shape, DD.shape
((2, 2), (2, 1), (1, 2), (1, 1))
>>> CC
array([[0., 0.]])
z9Dimension n is undefined for parameters A = B = C = None!z5Dimension p is undefined for parameters B = D = None!z5Dimension q is undefined for parameters C = D = None!c              3      >#    U  H=  nUb$  [         R                  " TR                  U5      SS9OTR                  S5      v   M?     g 7f)Nr   )ndim)r   r   )xpx
atleast_ndr   r	   ).0M_xps     r/   	<genexpr>!abcd_normalize.<locals>.<genexpr>   s@      ;-9r =?N#..Ba8((6"#-9s   AAr   r   zParameter A has shape z but should be (z, z)!zParameter B has shape zParameter C has shape zParameter D has shape )r   r   r   r   r	   )r,   r-   r.   r*   npqr8   s          @r/   r   r   u   s*   H 	yQY19TUUyQYPQQyQYPQQ	q	$B;./A\;JA! 	

3aggaj3AGGAJ3!A	
%aggaj%AA	
%aggaj%AA#AJ!O!A#AJ!O!A#AJ!O!A#AJ!O!Aww1&1!'':J1#RPQsRTUVVww1&1!'':J1#RPQsRTUVVww1&1!'':J1#RPQsRTUVVww1&1!'':J1#RPQsRTUVV:r0   c                    [        XX#5      u  pp#UR                  u  pVXF:  a  [        S5      eUSS2XDS-   24   nUSS2XDS-   24   n [        U 5      nUR                  S:X  aK  UR                  S:X  a;  [
        R                  " U5      nUR                  S:X  a  U R                  S:X  a  / nX4$ U R                  S   n	U SS2S4   USS2S4   -   USSS24   -   U-   S-   n
[
        R                  " XYS-   4U
R                  5      n[        U5       H8  n[        X+SS24   5      n[        U [        X5      -
  5      X;   S-
  U-  -   X'   M:     X4$ ! [         a    Sn GNf = f)a  State-space to transfer function.

A, B, C, D defines a linear state-space system with `p` inputs,
`q` outputs, and `n` state variables.

Parameters
----------
A : array_like
    State (or system) matrix of shape ``(n, n)``
B : array_like
    Input matrix of shape ``(n, p)``
C : array_like
    Output matrix of shape ``(q, n)``
D : array_like
    Feedthrough (or feedforward) matrix of shape ``(q, p)``
input : int, optional
    For multiple-input systems, the index of the input to use.

Returns
-------
num : 2-D ndarray
    Numerator(s) of the resulting transfer function(s). `num` has one row
    for each of the system's outputs. Each row is a sequence representation
    of the numerator polynomial.
den : 1-D ndarray
    Denominator of the resulting transfer function(s). `den` is a sequence
    representation of the denominator polynomial.

Examples
--------
Convert the state-space representation:

.. math::

    \dot{\textbf{x}}(t) =
    \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
    \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\

    \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
    \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)

>>> A = [[-2, -1], [1, 0]]
>>> B = [[1], [0]]  # 2-D column vector
>>> C = [[1, 2]]    # 2-D row vector
>>> D = 1

to the transfer function:

.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

>>> from scipy.signal import ss2tf
>>> ss2tf(A, B, C, D)
(array([[1., 3., 3.]]), array([ 1.,  2.,  1.]))
z)System does not have the input specified.Nr   r           )r   r   r   r   sizer!   ravelemptyr   ranger   r   )r,   r-   r.   r*   inputnoutninr%   r$   
num_states	type_testkCks                r/   r   r      sj   t  a+JA!ID|DEE 	
!U19_
A	!U19_
A1g 	
!!&&A+hhqkFFaKaffkCxJ!Q$!AqD'!AadG+a/#5I
((Dq.)9??
;C4[Q$ a#a*n%S(88  8O!  s   	E E E c                 &    [        [        XU5      6 $ )a
  Zero-pole-gain representation to state-space representation

Parameters
----------
z, p : sequence
    Zeros and poles.
k : float
    System gain.

Returns
-------
A, B, C, D : ndarray
    State space representation of the system, in controller canonical
    form.

)r   r   )zr<   rI   s      r/   r   r   2  s    " &q/""r0   c           
      $    [        [        XX#US96 $ )aV  State-space representation to zero-pole-gain representation.

A, B, C, D defines a linear state-space system with `p` inputs,
`q` outputs, and `n` state variables.

Parameters
----------
A : array_like
    State (or system) matrix of shape ``(n, n)``
B : array_like
    Input matrix of shape ``(n, p)``
C : array_like
    Output matrix of shape ``(q, n)``
D : array_like
    Feedthrough (or feedforward) matrix of shape ``(q, p)``
input : int, optional
    For multiple-input systems, the index of the input to use.

Returns
-------
z, p : sequence
    Zeros and poles.
k : float
    System gain.

)rD   )r   r   )r,   r-   r.   r*   rD   s        r/   r   r   F  s    6 5q5122r0   c                 \	   [        U S5      (       a*  [        U R                  5      (       a  U R                  XUS9$ [        U 5      S:X  a9  [	        [        U S   U S   5      XUS9n[        US   US   US   US   5      U4-   $ [        U 5      S:X  a=  [	        [        U S   U S   U S   5      UX#S9n[        US   US   US   US   5      U4-   $ [        U 5      S:X  a  U u  pVpxO[        S	5      eUS
:X  a%  Uc  [        S5      eUS:  d  US:  a  [        S5      eUS
:X  a  [        R                  " UR                  S   5      X1-  U-  -
  n	[        R                  " U	[        R                  " UR                  S   5      SU-
  U-  U-  -   5      n
[        R                  " XU-  5      n[        R                  " U	R                  5       UR                  5       5      nUR                  5       nX[        R                   " X{5      -  -   nGOUS:X  d  US:X  a  [	        XS
SS9$ US:X  d  US:X  a  [	        XS
SS9$ US:X  a  [	        XS
SS9$ US:X  Ga  [        R"                  " XV45      n[        R"                  " [        R$                  " UR                  S   UR                  S   45      [        R$                  " UR                  S   UR                  S   45      45      n[        R&                  " X45      n[        R(                  " UU-  5      nUSUR                  S   2SS24   nUSS2SUR                  S   24   n
USS2UR                  S   S24   nUnUnGOMUS:X  a  UR                  S   nUR                  S   n[        R*                  " [        R,                  " XV/5      U-  [        R                  " U5      5      n[%        UUSU-  -   45      n[        R,                  " U/U//5      n[        R(                  " U5      nUSU2SU24   nUSU2UUU-   24   nUSU2UU-   S24   nUn
UU-
  UU-  -   nUnXU-  -   nOeUS:X  aP  [        R.                  " US5      (       d  [        S5      e[        R(                  " XQ-  5      n
X-  U-  nUnXv-  U-  nO[        SU S35      eXXU4$ )a(  
Transform a continuous to a discrete state-space system.

Parameters
----------
system : a tuple describing the system or an instance of `lti`
    The following gives the number of elements in the tuple and
    the interpretation:

        * 1: (instance of `lti`)
        * 2: (num, den)
        * 3: (zeros, poles, gain)
        * 4: (A, B, C, D)

dt : float
    The discretization time step.
method : str, optional
    Which method to use:

        * gbt: generalized bilinear transformation
        * bilinear: Tustin's approximation ("gbt" with alpha=0.5)
        * euler: Euler (or forward differencing) method ("gbt" with alpha=0)
        * backward_diff: Backwards differencing ("gbt" with alpha=1.0)
        * zoh: zero-order hold (default)
        * foh: first-order hold (*versionadded: 1.3.0*)
        * impulse: equivalent impulse response (*versionadded: 1.3.0*)

alpha : float within [0, 1], optional
    The generalized bilinear transformation weighting parameter, which
    should only be specified with method="gbt", and is ignored otherwise

Returns
-------
sysd : tuple containing the discrete system
    Based on the input type, the output will be of the form

    * (num, den, dt)   for transfer function input
    * (zeros, poles, gain, dt)   for zeros-poles-gain input
    * (A, B, C, D, dt) for state-space system input

Notes
-----
By default, the routine uses a Zero-Order Hold (zoh) method to perform
the transformation. Alternatively, a generalized bilinear transformation
may be used, which includes the common Tustin's bilinear approximation,
an Euler's method technique, or a backwards differencing technique.

The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear
approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method
is based on [4]_.

References
----------
.. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models

.. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf

.. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized
    bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754,
    2009.
    (https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)

.. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control
    of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley,
    pp. 204-206, 1998.

Examples
--------
We can transform a continuous state-space system to a discrete one:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cont2discrete, lti, dlti, dstep

Define a continuous state-space system.

>>> A = np.array([[0, 1],[-10., -3]])
>>> B = np.array([[0],[10.]])
>>> C = np.array([[1., 0]])
>>> D = np.array([[0.]])
>>> l_system = lti(A, B, C, D)
>>> t, x = l_system.step(T=np.linspace(0, 5, 100))
>>> fig, ax = plt.subplots()
>>> ax.plot(t, x, label='Continuous', linewidth=3)

Transform it to a discrete state-space system using several methods.

>>> dt = 0.1
>>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh', 'impulse']:
...    d_system = cont2discrete((A, B, C, D), dt, method=method)
...    s, x_d = dstep(d_system)
...    ax.step(s, np.squeeze(x_d), label=method, where='post')
>>> ax.axis([t[0], t[-1], x[0], 1.4])
>>> ax.legend(loc='best')
>>> fig.tight_layout()
>>> plt.show()

to_discrete)dtmethodalphar   r   r   )rQ   rR         zKFirst argument must either be a tuple of 2 (tf), 3 (zpk), or 4 (ss) arrays.gbtNzUAlpha parameter must be specified for the generalized bilinear transform (gbt) methodzDAlpha parameter must be within the interval [0,1] for the gbt methodg      ?bilineartusting      ?eulerforward_diffr?   backward_diffzohfohimpulsez<Impulse method is only applicable to strictly proper systemszUnknown transformation method '')hasattrcallablerO   r   r   r   r   r   r   r   r!   r   r   r   solve	transposer   r"   r	   vstackexpm
block_diagblockallclose)systemrP   rQ   rR   sysdabcdimaadbdcdddem_upperem_loweremmsr;   mms11ms12ms13s                          r/   r   r   d  s   F v}%%(63E3E*F*F!!Re!DD
6{aU6!9fQi8"#(*T!Wd1gtAwQ8B5@@	V	VF1Ivay&)Db$*9d1gtAwQa9REAA	V	
a 6 7 	7 = K L LQY%!) 8 9 9 ffQWWQZ 58A:-\\#rvvaggaj1SYN14DDE\\#!t$ \\#--/1;;=9\\^rvva}$$	:	8!3VSAA	7	f6VSAA	?	"VSAA	599aV$ 99bhh
AGGAJ'?@ hh
AGGAJ'?@B C YY+,[[b! Q1QWWQZ< 1771:;	5GGAJGGAJ $$RXXqf%5%:BFF1IF!QQY(XXzH:./[[_ "1"ac'{"1"aAg+"1"a!ef*~D[4$;&T\	9	{{1a   : ; ; [[ Vb[URZ :6(!DEE22r0   )NNNN)r   )r[   N) __doc__numpyr!   r   r   r   r   r   r   r	   r
   r   scipyr   scipy._lib._array_apir   r   scipy._lib.array_api_extra_libarray_api_extrar4   _filter_designr   r   r   __all__r   r   r   r   r   r    r0   r/   <module>r      s\   
 1 1 1  : ( ( 5 5^BaHVr#(3<Gr0   